Articulatory Reduction in Intoxicated Speech
Abby Kaplan, UCSC Department of Linguistics
LSA Annual Meeting, January 9th, 2010

Motivation

- Many alternations claimed to involve articulatory effort reduction:
 - Intervocalic voicing (Kingston and Diehl 1994)
 - Intervocalic spirantization (Kirchner 2001)
 - Postnasal voicing (Hayes 2004[1999])
 - Final devoicing
- But reasoning about articulatory effort based on abstract models (Hayes 2004[1999]; Kirchner 2001) or indirect measurements
- Effort reduction very hard to observe in action
- Premise of experiment: create conditions in which subjects are likely to produce more ‘easy’ articulations and fewer ‘hard’ ones
- Method: compare intoxicated productions (expected to favor ‘easy’ articulations) with sober ones
 ⇒ Intoxication impairs cognitive and motor function (Chin and Pisoni 1997), produces errors such as deaffrication (Pisoni et al. 1986, 138,144) that could be interpreted as effort reduction

Experimental Design

- Stimuli: syllabic words w/ initial stress
 - 72 words w/ a single intervocalic stop (e.g., buggy)
 - 56 words w/ a nasal-stop cluster (e.g., amber)
- Subjects: seven UCSC students plus one pilot subject (linguistics grad student, subject 00), all naive to purpose of experiment
- Each subject recorded in two conditions: intoxicated and sober
 - Two conditions on separate days (except subject 00); order varied across subjects
 - Intoxicated condition: recording made with BAC between 0.10 and 0.12
- Stimuli read in frame sentence “I SAID ___ already.”

Quantities measured:
- Consonant Duration for intervocalic and postnasal stops; duration of latter measured from end of vowel (separate nasal was not always identifiable)
- Voicing Duration for intervocalic and postnasal stops and for [d] of said in frame sentence
- Burst Duration for intervocalic stops
- Burst Intensity for intervocalic stops, after running burst through a high-pass filter (1700 Hz and up) to eliminate voicing
- Slope of Intensity Contour for intervocalic stops: largest slope of intensity contour between minimum in consonant and maximum in following vowel (Kingston 2008)

Results

- Each graph shows one measure for a representative subject
 - Each point: one stimulus word
 - Plotting symbol: target consonant (initial consonant for word-final voicing)
 - X-axis: sober; y-axis: intoxicated (averaged over two repetitions)
 - Purple: voiceless; green: voiced; gray: outliers (removed from final models)
 - Dashed lines: x = y; solid lines: regression lines from linear mixed-effects model
 ⇒ Predicts intoxicated measure from sober measure, with by-subject slopes and intercepts
 - For all graphs shown, slope of regression line is < 1 and > 0 at $\alpha = .05$

Discussion

- Two basic patterns:
 - Shift: regression line (almost) entirely above or below $x = y$
 - X-pattern: regression line shallower than $x = y$, cross in middle of data
- Shift: intoxication induces change in a single direction
 - Less intense bursts
 - Longer intervocalic stops
- X-pattern: intoxication induces regression to mean
 - Voicing duration intervocally, postnasally, word-ﬁnally
 ⇒ But postnasal results may be parasitic on X-pattern for overall postnasal consonant duration, and word-ﬁnal correlations are weak
 - Burst duration
 - Maximum slope of intensity contour
- Do these results look like effort reduction? Plausibly:
 - Shift: favor long consonants with weak bursts
 - X-pattern: compression of articulatory space
- Does effort reduction look like lenition? Not exactly:
 - Unidirectional patterns such as intervocalic voicing, final devoicing favor one type of production over another; corresponding ‘X-patterns’ don’t

References

Robert Kirchner. An Effort Based Approach to Consonant Lenition. Outstanding Disserta-

Many thanks to Keith Johnson, Aaron Kaplan, Grant McGree, Jane Padgett, Paul Wilks, and audiences at UC Santa Cruz, Stanford, and NELS 40. All shortcomings are my own. This research was funded by an NSF Graduate Research Fellowship.